Hands-On Neural Networks with TensorFlow 2.0


I’m really happy to announce that the first edition of Hands-On Neural Networks with TensorFlow 2.0 is out!

cover

The book is divided into 3 parts:

  1. Machine Learning and Neural Networks fundamentals: an explanation in simple words of the theory that powers many machine learning algorithms, with a focus on neural networks
  2. TensorFlow fundamentals: the TensorFlow 1.x architecture, the new TensorFlow 2.0 architecture, its new features and ecosystem, and how to transition from TensorFlow 1.x to 2.0
  3. Neural Networks applications: how to solve problems developing neural networks-based solutions and, at the same time, learn how the new features of the TensorFlow 2.0 ecosystem can help us in every step of the machine learning pipeline; production included.

The book is available on Amazon on three different stores and is available both in paperback and Kindle version!

Do not hesitate to leave feedback on Amazon or send me an email!

Don't you want to miss the next article? Do you want to be kept updated?
Subscribe to the newsletter!

Related Posts

Analyzing tf.function to discover AutoGraph strengths and subtleties - part 3

In this third and last part, we analyze what happens when tf.function is used to convert a function that contains complex Python constructs in its body. Should we design functions thinking about how they are going to be converted?

Analyzing tf.function to discover AutoGraph strengths and subtleties - part 2

In part 1 we learned how to convert a 1.x code to its eager version, the eager version to its graph representation and faced the problems that arise when working with functions that create a state. In this second part, we’ll analyze what happens when instead of a tf.Variable we pass a tf.Tensor or a Python native type as input to a tf.function decorated function. Are we sure everything is going to be converted to the Graph representation we expect?

Analyzing tf.function to discover AutoGraph strengths and subtleties - part 1

AutoGraph is one of the most exciting new features of Tensorflow 2.0: it allows transforming a subset of Python syntax into its portable, high-performance and language agnostic graph representation bridging the gap between Tensorflow 1.x and the 2.0 release based on eager execution. As often happens all that glitters is not gold: although powerful, AutoGraph hides some subtlety that is worth knowing; this article will guide you through them using an error-driven approach.

Tensorflow 2.0: Keras is not (yet) a simplified interface to Tensorflow

In Tensorflow 2.0 Keras will be the default high-level API for building and training machine learning models, hence complete compatibility between a model defined using the old tf.layers and the new tf.keras.layers is expected. In version 2 of the popular machine learning framework the eager execution will be enabled by default although the static graph definition + session execution will be still supported. In this post, you'll see that the compatibility between a model defined using tf.layers and tf.keras.layers is not always guaranteed.

Fixed camera setup for object localization and measurement

A common task in Computer Vision is to use a camera for localize and measure certain objects in the scene. In the industry is common to use images of objects on a high contrast background and use Computer Vision algorithms to extract useful information. There's a lot of literature about the computer vision algorithm that we can use to extract the information, but something that's usually neglected is how to correctly setup the camera in order to correctly address the problem. This post aim is to shed light on this subject.

Tensorflow 2.0: models migration and new design

Tensorflow 2.0 will be a major milestone for the most popular machine learning framework: lots of changes are coming, and all with the aim of making ML accessible to everyone. These changes, however, require for the old users to completely re-learn how to use the framework: this article describes all the (known) differences between the 1.x and 2.x version, focusing on the change of mindset required and highlighting the pros and cons of the new implementation.

Understanding Tensorflow's tensors shape: static and dynamic

Describing computational graphs is just a matter connecting nodes correctly. Connecting nodes seems a trivial operation, but it hides some difficulties related to the shape of tensors. This article will guide you through the concept of tensor's shape in both its variants: static and dynamic.

Camera calibration guidelines

The process of geometric camera calibration (camera resectioning) is a fundamental step for machine vision and robotics applications. Unfortunately, the result of the calibration process can vary a lot depending on various factors. There are a lot of empirical guidelines that have to be followed in order to achieve good results: this post will drive you through them.

Ethereum on Raspberry Pi: secure wallet and complete node with redundant storage

Ethereum is a relatively new player in the crypto-currencies ecosystem. If you are a researcher, an algorithmic trader or an investor, you could want to run an ethereum node to study, develop and store your ETH while contributing to the network good.

Understanding Tensorflow using Go

Tensorflow is not a Machine Learning specific library, instead, is a general purpose computation library that represents computations with graphs. Its core is implemented in C++ and there are also bindings for different languages. The bindings for the Go programming language, differently from the Python ones, are a useful tool not only for using Tensorflow in Go but also for understanding how Tensorflow is implemented under the hood.